
Journal of Statistical Physics. 1Iol. 74. Nos. 5/6. 1994 

Non-Markovian Reversible Chapman-Kolmogorov 
Measures on Subshifts of Finite Type 
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We consider shift-invariant probability measures on subshift dynamical systems 
with a transition matrix A which satisfies the Chapman-Kolmogorov equation 
for some stochastic matrix H compatible with A. We call them Chapman- 
Kolmogorov measures. A nonequilibrium entropy is associated to this class of 
dynamical systems. We show that if A is irreducible and aperiodic, then there 
are Chapman-Kolmogorov measures distinct from the Markov chain associated 
with H and its invariant row probability vector q. If, moreover, (q, H) is a 
reversible chain, then we construct reversible Chapman-Kolmogorov measures 
on the subshift which are distinct from (q, H). 

KEY WORDS: Topological Markov chain; Chapman-Kolmogorov equation; 
stationary non-Markovian stochastic processes; detailed balance. 

INTRODUCTION 

The stat is t ical  founda t ions  of  n o n e q u i l i b r i u m  t h e r m o d y n a m i c s  is based on 

the hypothes i s  that  the m a c r o s c o p i c  observab les  are  represen ted  by r a n d o m  

processes which obey  the C h a p m a n - K o l m o g o r o v  e q u a t i o n  (see, e.g., ref. 6, 
Chap te r  VII) .  T h e  d y n a m i c a l  jus t i f ica t ion  of  this hypothes i s  is based on a 

coarse-gra in ing  p rocedure  which goes  back  to Gibbs  and has been largely 
discussed by Ehrenfes t  and  Ehrenfest ,  ~7~ Uh lenbeck ,  19) and Kac.  t8~ T o  

formula te  this p r o c e d u r e  in an abs t rac t  way, we cons ider  a conse rva t ive  

dynamica l  system given by a o n e - t o - o n e  measu rab l e  t r a n s f o r m a t i o n  S ac t ing  
on a p robab i l i ty  space  (,(2, d )  and  prese rv ing  the p robab i l i ty  measu re  ~. It 

can be shown  131 that  such a coa r se -g ra in ing  p rocedure  is equ iva l en t  to the 

cons t ruc t ion  of  a pa r t i t i on  of  -(2 which we call the C h a p m a n - K o l m o g o r o v  
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partition. A finite partition ~ =  {Po ..... Pk-~} of f2, where P i e d  and 
P(Pi) > 0 for all i, is a Chapman-Kolmogorov partition if the family of 
matrices /7,, given by 

(17,,)u= p(s-"p~ I ei) (1) 

forms a semigroup: /-/,,+,c= /-/,/7,,., n, n'~>0; that is, I1,,=17", where /7 
denotes /7~. 

If one, moreover, requires the entropy functional of the non- 
equilibrium distributions to approach its equilibrium value, then /7  should 
be 0 irreducible and aperiodic 1-3]. It is generally supposed that the 
stationary process associated to the dynamical system and the partition 
is a Markov process; this leads to the Chapman-Kolmogorov property 
(see, e.g., ref. 6). Examples of non-Markovian stationary processes satisfy- 
ing the Chapman-Kolmogorov equation have been obtained by P. L6vy. In 
ref. 4 we constructed a family of processes with infinite memory satisfying 
this equation for positive /7. In some cases, the Markov chain is the only 
process satisfying the Chapman-Kolmogorov equation (for example, i f /7  
is the identity matrix). In general, the processes satisfying the Chapman- 
Kolmogorov property are more likely to be non-Markovian, as has been 
shown in ref. 5. Here we construct many distinct stationary processes 
satisfying the Chapman-Kolmogorov equation for irreducible and 
aperiodic/7. 

The construction of such partitions is also related to a problem in the 
spectral theory of dynamical systems (see, e.g., ref. 2) on the realization of 
a given spectral type with functions having simple spatial properties. 
Alexeyev It~ has shown that the maximal spectral type may be realized by 
a bounded function. It can be noticed that the existence of a Chapman- 
Kolmogorov partition with irreducible and aperiodic matr ix/7  implies that 
the system has a Lebesgue spectral type realized by a function taking a 
finite number of values. 

The existence of a Chapman-Kolmogorov partition is constraining for 
the dynamical system. In fact, if we consider the case of a partition with 
two cells, with /7 irreducible and aperiodic, H has two real eigenvalues 
2~ = 1 and 22 = 2 such that 121 < 1. The function X given by 

where (~o, c~) is an eigenvector o f / 7  corresponding to 22, has a spectral 
measure Pz eiquivalent to the Lebesgue measure. In fact, one verifies that 
X is orthogonal to 1 in L,2,, and if we take Ilxll = 1, then we obtain by simple 
computations 

1 eo =/lo(1 +~oX) 

<Z, U"X> =k"  IIxlI-~ = k ~'1 
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where (Uf)(X) = f ( S -  ~X) and p~ =/~(P;). Then we get 

< l e  o, U"I e o ) =  <Po(1 + C~oZ), #o(1 + c% U"Z)> 

=  ,o(1 ' ' )  (2) 

Now, c~ o and ~1 are computed  from the or thonormal i ty  of (1, g), 
%= Pt/Po, o~ = Po/Pl. This gives the following condition: 

P(Po n S-"Po) - P(Po)-' = P(Po) P(Pt )  2" (3) 

Conversely, if Po is a subset of (2, such that 0 < P(Po) < 1, and satisfy- 
ing (3) for some 2, then the parti t ion P =  {Po, P~=P'o} is a C h a p m a n -  
Kolmogorov  partition. This is also equivalent to 

la( P , n S -"p i  ) - -  ]2( P i) l l (  e j )  = o~iot.illil~ j. n (4) 

i =  0 or 1, for any n. 
This raises the question of whether this condition may be realized for 

any dynamical  system with Lebesgue spectral component ,  in particular,  for 
those systems with zero entropy. 

In ref. 5 we gave examples of ergodic systems with zero entropy having 
partitions ~ '  which are independent at different times. 

In Section 1 we construct  non -Markov  measures for topological 
Markov chains (subshifts) having irreducible and aperiodic transition 
matrix. These measures, which may  be ergodic, can be used as invariant 
measures for hyperbolic attractors.  

In Section 2 we consider the problem of construction of reversible 
stationary stochastic processes from reversible C h a p m a n - K o l m o g o r o v  
partitions. This corresponds to the so-called "microscopic reversibility" 
used in the statistical theory of nonequil ibrium thermodynamics  in order to 
justify the Onsager  relations. 161 This can be formulated as follows: The con- 
servative dynamical  system (O, d ,  S, p)  is called reversible if there exists a 
one-to-one p-preserving t ransformation I such that 12=  1 and ISI = S. 
Moreover,  we suppose that there exists a parti t ion ~ such that  IP~ = P~ for 
all i. This implies that  

tt(P,.onT-1p,.~n . . . n T  " p , . ) = p ( p , . n T - I p  ..... , n  .-. n T - " p , . o )  (5) 

where x i = 0  ..... k - 1 .  Let q~ be the mapping:  I - 2 ~ K  z, ~b(og)= (xi) defined 
by: T"o; e Px,. This mapping  t ransports  p into qsp, which is shift invariant 
on K z, such that 

~bp(Ogo = Xo ..... o9, = x,,) = ~bp(o9 o = x ....... 09, = Xo) (6) 
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If, moreover, ~ is a C h a p m a n - K o l m o g o r o v  partition, then the 
reversibility property (5) implies that 

p(P~)(/7"),j = p(Pj ) (17") j ,  (7) 

This is called the detailed balance equation (also "microscopic 
reversibility"). We show that the C h a p m a n - K o l m o g o r o v  equation and 
the detailed balance equation may be satisfied for stationary stochastic 
processes which are not Markovian and for dynamical systems even non- 
ergodic. Here also we see that the Markovian character is not  necessary. 

1. N O N - M A R K O V I A N  I N V A R I A N T  MEASURE ON 
SUBSHIFT SYSTEMS 

Let K = { 0 , 1  ..... k - l } ,  k />2,  and let A be a k x k  matrix whose 
elements Aij  are zero or one. Let 12 A be the set of all doubly infinite sequen- 
ces (o9,.), coieK, such that A ........ , =  1. Let a be the shift transformation: 
(aco)i= o9i+ t. Such a system is called a subshift or a topological Markov 
chain. 

Let H be a stochastic k x k matrix compatible with A, that is, H~i> 0 
if and only if A o > O .  A p-uplet ~=(i~ ..... ip) such that Ai,.i2 . . . . .  
Aip_~.ip= 1 will be called an admissible word of length I~1 = p. Let q =  (p~) 
be a row probability vector invariant under /7 .  The Markov  measure p~ is 
defined by 

/.t.(fO,, = X o ..... o9.+p=Xp)=p.,-oH.~o.x, ""17xp_t.x p ( 8 )  

which we simply denote p,(Xo ..... Xp). Thus /~ ,  is defined on the a-algebra 
dA generated by the admiss ib le  cylindrical sets 

J 

{r (.On= i l ,  (.On+ 1 = i  2 ..... O)n+p=ip} 

where r = (i= ,..., i , )  is an admissible word. 

D e f i n i t i o n .  A a-invariant probability measure on ( I2A ,o4A)  that 
satisfies the C h a p m a n - K o l m o g o r o v  equation 

v(og,,, = j [ 09 0 = i) = (H"),j  (9) 

for m > 0, will be called a C h a p m a n - K o l m o g o r o v  measure for the matrix 
/7. We denote by C, ,A  the set of these measures. 

Let C ..... A be the set of all probability measures/2 on K "§ charging 
the admissible cylindrical sets, invariant under the left-shift and satisfying 
(9) for m = 1 ..... n. For  any such/~, we define a measure v o on (12A, ~r by 

~)0( {(d): OJ0 = X 0 ,  (101 = X  I . . . . .  OJrt,=Xrn}) 
= / . t ( X  o ..... X n ) / Z ( X n +  1 ..... X2.[X,,) ' ' ' l . t(X(r_l).+ ! ..... Xr.[X(r_lln) ( 1 0 )  
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where we denote 

p({og:wo=Xo ..... cok = xk}) =/~(Xo ..... Xk), k<~n 

/ / ( { O 9 : O ) 1  = y I . . . . .  C.O,, = y , ,  [ w o = Y o } ) = # ( y l  ..... Y,  [ Yo) 

If FL is distinct from p ,  Ix.+,, then q~,,(p)= (I/n)ZT_So ~ aiVo is in C,.A and it 
is distinct f rom/a , ,  tS~ 

T h e o r e m  1. If H is irreducible and aperiodic, then there is N such 
that, for n >/N, C ..... A contains measures distinct from #~. 

ProoL In order to construct such/~, we shall solve the system 

Iz(izj) = p.( iz)  (11) 
.i 

~, p(izj) = p~(zj) (12) 
i 

p(irj) =/.t,~(o9 o = i, co,, +, = j )  (13) 
"r 

where r = (z I ..... r,,) is an admissible word�9 
For  any fixed z, Eqs. (11) and (12) form a linear system of equations 

denoted A X =  yo, where X represents the variables p(iTj). As p,(ir j)  is a 
solution of the system (which we denote X~ the general solution of the 
system is X ~  Z, where Z is the general solution to 

A Z = O  (14) 

By ordering the variables X =  {/z(i~j)} and Z =  {z,~(~)} lexicographi- 
cally {(0, 0), (0, 1) ..... (0, k -  1), (1, 0),...}, the matrix A takes the form 

0 0 . . .  

0 . . .  

0 � 9  

0 1 

0 0 0 

1 0 
0 1 

0 

0 0 

0 1 
0 

0 
1 0 

. . .  

. . .  

. . .  

. , .  

� 9  0 

1 

0 
0 0 1 

k •  

0 
1 
0 

0 

0 0 
0 0 

1 1 

1 0 
0 1 

0 0 

�9 � 9 1 7 6  O ~  

0 

�9 " "  0 

0 
0 1 

J 

S22 74/5-6-22 
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The rank of this matrix is (2k - 1 ). We take as principal variables for 
the system A Z = O  those indexed by {i, 0}, i = 0  ..... k - 2 ,  and ( k - l , j ) ,  
j = 0 ..... k -  1. They are expressed in terms of the other variables, which we 
call the parameters J. Taking, moreover, into account the positivity of 
p(izj), Z>~ - X  ~ we obtain 

zi.j(z)>~ --/.t,,(irj), ( i , j ) e J  
k - - I  

Z,,o(~) = - ~ z~,j( 'O >i -~(iz0), 
j = l  

k - 2  k - I  

i = 0  ..... k - 2  

z ,_  ,.o(Z) = ~ ~ zo.(z ) ~ - / ~ ( k -  1, z, O) 
i = 0  j = l  

k - 2  

Z k _ L j ( Z ) =  -- ~ Zi.j>~ - -# , , (k- -  1, z , j ) ,  
i = 0  

j = l  ..... k - 1  

(15) 

All these inequalities determine intervals of variation of the 
parameters. Moreover, the Chapman-Kolmogorov equation (13) becomes 

~ z i d ( Q = 0  (16) 
z 

We shall look for solutions such that all the parameters but four are 
vanishing. The nonvanishing parameters are denoted ziojo(z), zlo.io(a), 
zioj,(z), zioj,(tr), iov~k - 1, J o ~ J t ,  JoY LO, j l # 0 ,  zv~tr, I~1 = I,rl,  W e  find 
from (15) that Zk_ 1.0(Z), Zk_ 1.0(a), Zk_ 14o('r), and Zk_ ijo(tr) are also non- 
null. Such a solution implies that the number of states of the chain is at 
least 3, i.e., k/> 3. The case k = 2  will be discussed separately. The system 
(15) is then reduced to 

Z io.Jo('r ) >>. --la,,( io'rJo ) 

z io.y,('r ) >1 --#,~( io'rj l ) 

-la,~(k - 1, "c, O) <~ Zio.Jo(z ) + zio.j,(z) <~ I~,~(ioz, O) 

zio.io('r)<~t~,,(k- 1, "c, jo ) 

2io,j,(z ) <~lan(k-- 1, z, j l  ) 

(15') 

and similarly for a. 
The Chapman-Kolmogorov equations reduce to 

Z,o,Jo(T) = -Z,oJo(a) 
Z , -o j , ( 'O  = -Z,o.j,(o) 

(17) 
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A study of the system (15') for z and tr shows that  the inequalities 

la,,(iozJo)p,~(iozjl)#,~(k-l,'r, j o ) # , , ( k - l , z ,  j l )>O (18) 

#,~(ioaJo)l.t,~(ioaJ~)la,~(k-l,a, Jo) l . t , , (k- l ,a , j~)>O (19) 

are sufficient conditions for the existence of a nonunique solution. 
Condit ion (18) leaves us the freedom to choose (Zio4o(r), zio.j,(z)) in the 
subset 

Ii = {(x, y ) ~ 2 : x + y = O ,  -iG(iozJo)<~x<O, 0 < y ~ < / ~ ( k -  1, z, j0)} 

Similarly, (19) is a sufficient condit ion which leaves us the freedom to 
choose (Zio.jo(tr), z~o,j~(a)) in the subset 

/2 = {(x, y)  E R2: x + y =  0, 0 <x<~#,~(k- 1, tr, jo ), -lz,~(io, tr, j l )  ~<y < 0 }  

A s / 7  is irreducible and aperiodic, to satisfy (18) and (19), it is sufficient to 
find s, t ~ K, such that  

/Tk - t,s/7~o,s/7,/o/7,j~ > 0 (20) 

In fact, in this case, there exists an admissible word 6 = ( 6 1  ..... 6,,) 
sufficiently long connecting s and t so that  

#.(io,  s, 6, t, Jo) > 0, #.(io,  s, 6, t, J l )  > 0 

# . ( k - l , s ,  6, t, jo)>O, # . ( k - - l , s ,  6, t, j l )>O 

Now,  we find a : / : z -=  (s, 6, t) and satisfying (19): let n o > 0  such that  
/7"~ 0; then for n 1> 3no, let 2.o+~ ~ K  such that  2,,o+ ~ :~ 6.o+~; then there 
exist an admissible word (21 ..... 2.0 ) connecting s and 2,, 0 + ~ and an admissible 
word (2.o + 2 ..... 2,,) connecting 2.0 + l and t. Thus, a = (s, 2~ ..... 2,,, t) ~ z. 

Let us now show that  there exist s, t s K  such that  (20) is satisfied 
under the conditions 

iov~k-1 ,  jo~O, j l~O,  Jo~Jl  (21) 

After some permuta t ion  S of (0 ..... k - 1 ) ,  denoting S ( k - 1 ) = u ,  
S(io) = v, S(O)= l, the conditions (20) and (21) read: there e~ist u, v, J0, J~, 
1 such that  u:~v, u~ l ,  Jo#Jl ,  Jo# l, Jl #l ,  H~,~xH~xH,joXH,j ~ > 0 .  

They can be satisfied if, in particular,  we may  choose v = 1. Thus we 
need to prove the following result: 

Lemma 1. "Let 17 be an irreducible and aperiodic k x k matrix, 
k>~3. Then there exist states l, u, Jo, JJ, s, t with l #u ,  Jo#J~, jo# l ,  j ,  #l ,  
such that 

/7,~ x g~  x/7,Jo x/7,j, > 0 (20') 
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ProoL There exist t, Jo, J l ,  J o ~ J l ,  such that 1-ltj ox17 , / ,>0 ,  
otherwise 17 is deterministic and therefore periodic. We may suppose, 
without loss of generality, Jo = 0, j~ = 1. Now consider different possible 
values of t: 

(a) t = 0  or 1: If for any /, / 5 0 ,  1~1  we have l l t o = l l , = O ,  H 
should be reducible. Let then l be such that either Hto v ~ 0 or Ht,  v ~ 0, l ~  0, 
1:/: 1. Then, by taking s being either Jo or j~ and u =  t (20') is satisfied. 

(b) t t> 2: We may take, without loss of generality, t = 2. Suppose, ad 
absurdo, the lemma false; then, necessarily, H,o  = H,,~ = 0  for all u:r 
since on the contrary (20') is satisfied with s = 0  or  1. 

For  any 1 ~- 2, let s~ be such tha t / / t .~  > 0; then the states s3,..., Sk_ i are 
necessarily distinct, otherwise (20') is satisfied; so 

$ 3 , . . . ,  

for some r, as illustrated in 

0 

0 
0 

1 

0 

0 0 'l 

Sk_ 1 } = {2 ..... k - -  1}/{r} 

the following: 

1 s2  s ~ S k _  t 

. . . . . . . . . .  l . . . . . . . . . . .  

0 1 . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  . . .  

This also implies that So = si = i for some i >/2 and r = i, otherwise the 
lemma is true. Now r could not be equal to 2, otherwise either the lemma 
is true or we must have 17 o.= 0 for i/> 3, j~< 2, which implies that / /  is 
reducible. We consider the case r >1 3. 

It is now clear that Hi, k=O for any kv~s t  and any 1=/-2, and H2,k=0 
for any k/> 2. Therefore we have 

/'/03 X /'/13 X /"/3s 3 X "'" X i l k _  l.sk-t > 0  

This implies that 17 is periodic, a contradiction, and achieves the proof  of 
the lemma. 

Let us now consider the case k = 2. 
We look for solutions of (15) such that all the parameters, which are 

in this case Zol(Z), but two, are vanishing. The nonvanishing parameters are 
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denoted z01(z), Zol(a), r # a, l a l  = I~1, and they satisfy Zol(r) + Zol(a) = O. 
A similar discussion as above leads to an interval [0, a-l, a > 0 ,  for Zo~(r) 
and another  one [fl, 0] ,  f l < 0 ,  for Zo~(a), if the following conditio6s are 
satisfied: 

/~,(0, ~, 0 ) /~ (1 ,  r, 1 ) > 0  (22) 

#~( 1, r, 0) #~(0, a, 1 ) > 0 (23) 

We may  suppose, without loss of generality, that IIoo17o~II~o>O, a 
condition which is satisfied i f / 7  is aperiodic and irreducible. By repeating 
similar arguments  as above,  it turns out that this condition on/7~j allows 
us to find a and ~, a # r ,  la[ = [r[, satisfying (22) and (23). This achieves 
the proof  of the theorem. 

2. TIME REVERSIBILITY 

A stat ionary probabil i ty measure v on (g2 A, ~r a)  is time reversible if 

v(ogo=Xo ..... o g , , = x , , ) = v ( O g o = X , , , o g l = x , , _ z  ..... o9,, = Xo) (24) 

for any n and any (Xo ..... x,,). If  v = / t . ,  this proper ty  is equivalent to 

pil-Iij = pj17j~ 

We denote by R~,A the subset of all time-reversible probabil i ty 
measures of C,.A. For  simplicity, we omit  the index A in what follows. We 
shall construct  measures in R~ distinct from p , .  For  this purpose, we use 
the above construction. Denote  by R~.,  the set of measures in C .... which 
are time reversible in the sense of (24). We have the following lemma. 

L e m m a  2. L e t / a ~ R  .... ; then q~,,/~, given by (10), is in R~. 

ProoL  One obtains, by straightforward computat ion,  for 1=0 ,  1 ..... 
n - 1 ,  p c  N*, and x ~ K  z the following equations: 

(i) For  t i e  C .... 

V o ( { O ~ : O ~ o = X o  ..... % . = x p , , } )  

X/J(OJo=Xlp_21 ....... O) , ,_ l=Xlp_l )n_l  IOJ,,=X(p_ll,,) 
x .. .  x~(COo=X0 ..... ~o, ,_ ,=x, ,_~ I c o , , = x , )  

(ii) For  l a ~ , . , ,  

, 'o({  ~o: ~Oo = x . , , , . . . ,  o~.,, = Xo } ) = vo( { o~: O~o = ~ o  ..... ~o.,, = x . , ,  } ) 
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(iii) 

~'Vo( { o~: ~Oo = x .  ....... O~ p,, = Xo } )  = ~ " -  'Vo { ( ,o: O~o = Xo ..... ~o . .  = x . , ,  } ) 

The lemma follows from these equations and from the definition 
of ~0,, p. 

T h e o r e m  2. I f / 7  is reversible, irreducible, and aperiodic, then for 
all n > N, N sufficiently great, R .... A contains measures distinct from ~ .  

ProoL In order  to construct  # ~  R ,  for H irreducible and aperiodic 
which is distinct from a,, we proceed as in Section 1, by solving (11 )-(13) 
for any ~. On account  of the reversibility (24) this system is equivalent to 
(11), (13), and (24). The linear system (14) is simplified to the first k equa- 
tions. So, for any fixed ,, we have to solve A Z  = 0 for Z = (zi.j) with matrix 
A being the k first lines of (14). The rank of this system is k. We take as 
principal variables those indexed by (i, 0) for all i. They are expressed in 
terms of the other variables, the parameters  J, as follows: 

k - I  

ZiO=- ~ Zij~ V i = 0  ..... k - 1  

Let us denote r(zt ..... z , , )= (~,,,..., r~). We look for a solution such that for 
some r and a # z ,  r:C-r(z), and aq:r(a) ,  Ziojo(z), zi0.j,(r), zioj0(a), and 
Z~o.j,(a) are nonvanishing, with Jo # 0, Jt :/: 0, Jo ~:Jl, and 

~z0(r)=0 

In order to ensure the reversibility of p, we have to construct  solutions 
such that 

z~(~,  ..... T,,) = z j ~ ( r  ....... r , )  

On account of the reversibility o f /7 ,  we see that II~j > 0 iff/7j~ > 0. 
Then Zjo, io(r(z)), zj~,;0(r(r)) , Zjo,io(r(a)) , and Zjao(r(~r)) are also non- 

vanishing. We take all the others parameters  vanishing. 
Here the positivity conditions are 

zio.jo( r ) >1 - -# , (  io rJo) 

zio.j,(z) >i --It=(iozj,) 

ZioJ0(r) + zio,j,(r) <~ ~,(io r 
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The same inequalities hold for a. As above, it is sufficient for this to 
have 

It~(iozJo ) > O, It,~(iocrjl ) > 0 

They are satisfied if there exist s, t ~ K, s :~ t, such that  

17 ios /7  ,jo f l  ,/, > 0 

This is satisfied for any aperiodic ma t r ix /7 .  
The proof  goes through as above. | 

R e m a r k .  In the case of a strictly positive mat r ix /7 ,  the set of It ~ R , . ,  
which coincide with It~ on the first n coordinates contains a nonempty  
convex open set. 

In fact, to construct  reversible invariant  measures on K ~+1 distinct 
from Its, we proceed in solving the linear system 

2 
x I  , - - - ,  X n  - 1 

Y, It(Xo ..... x . )  = I t . (Xo ..... x . _  1) 
Xn 

It(i, x o ..... x , , _  1, J) = I t , (Wo = i, ~o,, = j )  

(25) 

(26) 

It(Xo ..... x , )  = # ( x  ....... Xo) (27) 

Using (27), we are left with the system (25) and (26) and a reduced 
number  of  unknowns It(Xo ..... x,) .  Let us denote by I (r )  the subset of K "+1 
such that  x = r(x) .  When x = r (x ) ,  we choose one of It(x) and I t ( r (x ) )  as 
unknown, eliminating the other in view of (27). Thus we have a new system 
given by (25) and (26) and a reduced set of  unknowns,  which we denote 
A X =  yO. Denote  by X ~ the solution It~(Xo ..... x,) .  A general solution 
. t '=  X ~ + Z, Z e  Ker(A),  has to satisfy the positivity of It, i.e., Z>~ - X  ~ To 
compute the number  of unknowns,  we distinguish two cases: 

(a) If  n = 2 p +  1: The number  of unknowns is � 8 9  p+I + 1). 

(b) If n = 2 p :  The number  of unknowns is � 8 9  I). 

Now,  in the system (25) and (26) some equations are . redundant .  In 
fact, if (Xo ..... x , , _ l ) =  (x ,_  1 ..... Xo), then Eq. (25) implies, in view of the 
reversibility of B~, 

"~ I t ( x , _  1 ..... Xo, y )  = I t~(x ,  _ 1,..., Xo) 
Y 

Similarly, in (26) we may  take only i ~< j. Thus the number  of equations 
is reduced: 
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(a) If n = 2 p + l :  The number  of unknowns is k (2p+l ) - k IP+l ) . q -  

�89 + 1). 

(b) If n = 2 p :  The number  of unknowns is k 2 P - k P + � 8 9  1). 

Therefore: 

(a) I f n = 2 p +  1: 

1 kp + l(kp + l k k dim Ker  A > ~  + 1 ) - k p + l ( k p -  1 ) - ~ ( + 1 )  

(b) I f n = 2 p :  

d i m K e r A / >  k P + ' ( k P + l ) - k P ( k  p - 1 ) - ~ ( k + l )  

This is greater  than 1 for any n/> 2 and k/> 2. 
This shows that  the kernel of A is a nontr ivial  vector  space. Thus, 

Ker(A)c~ {Z: Z>~ - t  "~ is a convex ne ighborhood  of 0 in Ker(A).  
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