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Non-Markovian Reversible Chapman—Kolmogorov
Measures on Subshifts of Finite Type
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We consider shift-invariant probability measures on subshift dynamical systems
with a transition matrix 4 which satisfies the Chapman-Kolmogorov equation
for some stochastic matrix /T compatible with 4. We call them Chapman-
Kolmogorov measures. A nonequilibrium entropy is associated to this class of
dynamical systems. We show that if 4 is irreducible and aperiodic, then there
are Chapman-Kolmogorov measures distinct from the Markov chain associated
with /T and its invariant row probability vector ¢. If, moreover, (¢. IT) is a
reversible chain, then we construct reversible Chapman-Kolmogorov measures
on the subshift which are distinct from (¢, /7).

KEY WORDS: Topological Markov chain; Chapman-Kolmogorov equation;
stationary non-Markovian stochastic processes; detailed balance.

INTRODUCTION

The statistical foundations of nonequilibrium thermodynamics is based on
the hypothesis that the macroscopic observables are represented by random
processes which obey the Chapman-Kolmogorov equation (see, e.g., ref. 6,
Chapter VII). The dynamical justification of this hypothesis is based on a
coarse-graining procedure which goes back to Gibbs and has been largely
discussed by Ehrenfest and Ehrenfest,'”’ Uhlenbeck,’ and Kac.’*’ To
formulate this procedure in an abstract way, we consider a conservative
dynamical system given by a one-to-one measurable transformation S acting
on a probability space (£2, .«/) and preserving the probability measure p. It
can be shown'® that such a coarse-graining procedure is equivalent to the
construction of a partition of Q which we call the Chapman-Kolmogorov
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partition. A finite partition 2= {P,,.., P,_,} of Q, where P,e s/ and
u(P;)>0 for all i, 1s a Chapman-Kolmogorov partition if the family of
matrices /1, given by

(L) =n(S""P;| P) (1)

forms a semigroup: 11, ., =111, n, n' 20; that is, I1,=II", where i1
denotes I7,.

If one, moreover, requires the entropy functional of the non-
equilibrium distributions to approach its equilibrium value, then /7 should
be 0 irreducible and aperiodic [3]. It is generally supposed that the
stationary process associated to the dynamical system and the partition £
is a Markov process; this leads to the Chapman-Kolmogorov property
(see, e.g., ref. 6). Examples of non-Markovian stationary processes satisfy-
ing the Chapman—Kolmogorov equation have been obtained by P. Lévy. In
ref. 4 we constructed a family of processes with infinite memory satisfying
this equation for positive /1. In some cases, the Markov chain is the only
process satisfying the Chapman-Kolmogorov equation (for example, if /7
is the identity matrix). In general, the processes satisfying the Chapman-
Kolmogorov property are more likely to be non-Markovian, as has been
shown in ref. 5. Here we construct many distinct stationary processes
satisfying the Chapman-Kolmogorov equation for irreducible and
aperiodic [7.

The construction of such partitions is also related to a problem in the
spectral theory of dynamical systems (see, e.g., ref. 2) on the realization of
a given spectral type with functions having simple spatial properties.
Alexeyev'!! has shown that the maximal spectral type may be realized by
a bounded function. It can be noticed that the existence of a Chapman-
Kolmogorov partition with irreducible and aperiodic matrix /7 implies that
the system has a Lebesgue spectral type realized by a function taking a
finite number of values.

The existence of a Chapman-Kolmogorov partition is constraining for
the dynamical system. In fact, if we consider the case of a partition with
two cells, with I7 irreducible and aperiodic, IT has two real eigenvalues
A, =1 and A, =2 such that |}| < 1. The function y given by

x=o0glp +alp

where (ag, o) is an eigenvector of I7 corresponding to 4,, has a spectral
measure u, eiquivalent to the Lebesgue measure. In fact, one verifies that
x 1s orthogonal to 1 in Lf,, and if we take | x|l = 1, then we obtain by simple
computations

Vpg= o1 + 05 x)
Uy = 2 gl = A
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where (Uf}(X)= f(S™'X) and y;= u(P,). Then we get

Ly UMy = o1+ 09 ), po(1 400 Uy )D
= u3(1 +ada") (2)

Now, o, and a, are computed from the orthonormality of (1, y),
%5 =i, /po, @1 = po/u;. This gives the following condition:

H(Po N S™"Po) — p(Po)* = u(Po) u(Py) A" (3)

Conversely, if P is a subset of 2, such that 0 < u(P,) < 1, and satisfy-
ing (3) for some 4, then the partition P={P, P,= P} is a Chapman—
Kolmogorov partition. This is also equivalent to

wP;NS™"P;)— u(P;) H(P) = oo pa; A" (4)

i=0 or 1, for any a.

This raises the question of whether this condition may be realized for
any dynamical system with Lebesgue spectral component, in particular, for
those systems with zero entropy.

In ref. 5 we gave examples of ergodic systems with zero entropy having
partitions £ which are independent at different times.

In Section! we construct non-Markov measures for topological
Markov chains (subshifts) having irreducible and aperiodic transition
matrix. These measures, which may be ergodic, can be used as invariant
measures for hyperbolic attractors.

In Section 2 we consider the problem of construction of reversible
stationary stochastic processes from reversible Chapman-Kolmogorov
partitions. This corresponds to the so-called “microscopic reversibility”
used in the statistical theory of nonequilibrium thermodynamics in order to
justify the Onsager relations.'®’ This can be formulated as follows: The con-
servative dynamical system (€2, o7, S, u) is called reversible if there exists a
one-to-one u-preserving transformation 7/ such that /=1 and ISI=S.
Moreover, we suppose that there exists a partition £ such that IP;= P, for
all i. This implies that

WP AT P nT"P )=p(P,A"T 'P,_ n---nT"P) (5)

Nn—1

where x;=0.,.., k— 1. Let & be the mapping: Q — K%, ¢(w)=(x,) defined
by: T"we P, . This mapping transports u into @y, which is shift invariant
on KZ, such that

¢/‘l(w0 = xO""v W, = X") = ¢/1(U)0 = Xpppeey W), = xO) (6)
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If, moreover, # is a Chapman-Kolmogorov partition, then the
reversibility property (5) implies that

u(PYIT") ;= pu(P)UT"); (7)

This is called the detailed balance equation (also “microscopic
reversibility”). We show that the Chapman-Kolmogorov equation and
the detailed balance equation may be satisfied for stationary stochastic
processes which are not Markovian and for dynamical systems even non-
ergodic. Here also we see that the Markovian character is not necessary.

1. NON-MARKOVIAN INVARIANT MEASURE ON
SUBSHIFT SYSTEMS

Let K={0,1,..,k—1}, k=2, and let 4 be a kxk matrix whose
elements A ; are zero or one. Let 2, be the set of all doubly infinite sequen-
ces (w;), w; eK, such that 4,, .., =1. Let ¢ be the shift transformation:
(ow);=w,, ;. Such a system is called a subshift or a topological Markov
chain.

Let /7 be a stochastic k x k matrix compatible with A4, that is, 17,,>0
if and only if 4,>0. A p-uplet t=(i,,.,i,) such that 4, ,=---=
A, =1 will be called an admissible word of length |7| = p. Let g= (p )

be a row probability vector invariant under /7. The Markov measure p, is
defined by

}1,,((1),,=Xo,..., wn+p X )_p\o X0, X| "'H.\',,_l..\',, (8)

which we simply denote p,(xq,..., x,). Thus u, is defined on the g-algebra
7, generated by the admissible cylindrical sets

{Cl): U),, = il > Cl),,+ 1= iZ""’ wn+p = lp}
where = (i,.., I,) is an admissible word.

Definition. A g¢-invariant probability measure on (2,, «/,) that
satisfies the Chapman-Kolmogorov equation

\’((1),,,=j | w0=i)=(nm)ij (9)

for m >0, will be called a Chapman-Kolmogorov measure for the matrix
I1. We denote by C, , the set of these measures.

Let C,, , be the set of all probability measures p on K"*' charging
the admissible cylindrical sets, invariant under the left-shift and satisfying
(9) for m=1,.., n. For any such y, we define a measure v, on (2, &/,) by

VO({(U: Wo = Xg, W} = X,y wrn=xrn})

=}1(X0,..., X,,) u(xn+l9"" X, | xn) ) "[.l(X(,_ 1yn+ Es X | x(r— l)n) (10)
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where we denote
U{@: @p = Xgyeey Wp = X }) = W Xgyenr Xi)s k<n
H{w: 0= Y1y 0= Yy | 0o= Yo }) =W P15y V| ¥o)
If u is distinct from p,, | gn+1, then @, (p)=(1/n) 3724 6've is in C,_, and it
is distinct from .

Theorem 1. If IT is irreducible and aperiodic, then there is N such
that, for n>= N, C,, , contains measures distinct from p..

Proof. 1In order to construct such p, we shall solve the system

3 ulitf) = hylin) (1)
Z#(ifj)=#n(rj) (12)
Zu(’rj)=#n(w0=l’ wn+l=j) (13)

where t = (1,,.., T,) is an admissible word.

For any fixed 7, Eqs. (11) and (12) form a linear system of equations
denoted AX = Y°, where X represents the variables u(itj). As u,(itj) is a
solution of the system (which we denote X°), the general solution of the
system is X°+ Z, where Z is the general solution to

AZ=0 (14)

By ordering the variables X = {u(i7j)} and Z = {z;(t)} lexicographi-
cally {(0,0), (0, 1),..., (0, k—1), (1, 0),...}, the matrix A4 takes the form

((t 1 .. 1]0 0 --- 0 010 --- 0
00 .-~ 0|l 1 -1 0l0 -~ 0
o o 0l0 0 0 1)1 1
(|1 0 01 O 0 110 0
0 1 0 1 01
k< ‘
. 0] - 0 . J
\L0 0 0 110 0 O 1 010 0 1

kxk

K22 74/5-6-22
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The rank of this matrix is (2k — 1). We take as principal variables for
the system AZ =0 those indexed by {i, 0}, i=0,..,k—2, and (k—1, j),
j=0,..., k— 1. They are expressed in terms of the other variables, which we
call the parameters J. Taking, moreover, into account the positivity of
u(itj), Z>= —X°, we obtain

zi,j(T)> _#n(i‘tj)a (la J)GJ
k—

z;o(t)=— Y, z;;(1) = —p,(ir0), ~i=0,.,k—2
- (15)

k—2 k—1

Zk-—lo(T)—z Z z;(1) = —p(k—1,1,0)

(==Y z,;2 —plk—1,1,j), j=l., k-1

i=0

All these inequalities determine intervals of variation of the
parameters. Moreover, the Chapman-Kolmogorov equation (13) becomes

Yz, (r)=0 (16)

We shall look for solutions such that all the parameters but four are
vanishing. The nonvanishing parameters are denoted z,,(t), z;;(7),
2;,;()s Zipp(@), Bo#Fk—1, jo#ji, Jo#0, j,#0, t#0, |t|=|0o|, We find
from (15) that z,_, o(t), zx—1,0(0), k1. ,(7), and z,_ (o) are also non-
null. Such a solution implies that the number of states of the chain is at
least 3, ie, k> 3. The case k=2 will be discussed separately. The system
(15) is then reduced to ]

10 10(1)2 “n(IOTJO)
lo j|(T)> —Hy (iotjl)
—alk —1,7,0) Sz o)+ 24, (T) S palipT, 0) (15%)

zio‘jo(r) < “n(k - 1’ T .’0)
Zio.jl(T) < “n(k - 1, T, j])
and similarly for o.
The Chapman-Kolmogorov equations reduce to
in-fO(r) to _/o(o-)

ZiD»jI(T) = —2,-0.1-1(0')

(17)
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A study of the system (15') for T and o shows that the inequalities
HalioTo) alioTy) ualk — 1, T, jo) ualk — 1,7, j;) >0 (18)
1aliojo) Halioo)i) pn(k — 1, 0, jo) polk — 1,0, j;)>0 (19)
are sufficient conditions for the existence of a nonunique solution.

Condition (18) leaves us the freedom to choose (z; (1), z;, (7)) in the
subset

11= {(x’ y)ele:x+y=0, —#n(iofjo)<x<o,0<}’<#n(k— 1: T,jO)}

Similarly, (19) is a sufficient condition which leaves us the freedom to
choose (z,, (), z;, ;(¢)) in the subset

12= {(x,y)E[Rz:x+y=0,0<x<l,ln(k— 1, U,jo), ~#n(i0’aajl)<y<0}

As IT is irreducible and aperiodic, to satisfy (18) and (19), it is sufficient to
find s, r € K, such that

o, 0, 0,0, >0 (20)

= Ls* g, s 1ot an

In fact, in this case, there exists an admissible word é=(d,,..,9,)
sufficiently long connecting s and ¢ so that

/“'n(i07 s, 5’ t, j0)>0’ l“'n(io, S, 6’ t’ Jl)>0
‘u.n(k—l,s,é,t,jo)>0, /ln(k_las157t7jl)>0

Now, we find o #1=(s, d, t) and satisfying (19): let n,>0 such that
11" > 0; then for n>3n,, let A, ,€ K such that 4, ,, #6,,,,; then there
exist an admissible word (4,,.., 4,,) connecting s and 4, , , and an admissible
word (A, 42, 4,) connecting 4, ,, and t. Thus, 6 = (s, 4;,.., 4,,, 1) # 1.

Let us now show that there exist s, 1€ K such that (20) is satisfied
under the conditions

io#k—1,  jo#0,  ji#0, Jjo#J (21)

After some permutation S of (0,..,k—1), denoting S(k—1)=u,
S(iy) =v, S(0) =1 the conditions (20) and (21) read: there exist u, v, jq, /|,
[ such that usv, u#l, jo#j,, jo#L J1#2L O x 1T, x I, xIT; >0.

They can be satisfied if, in particular, we may choose v =1/ Thus we
need to prove the following result:

Lemma 1. Let IT be an irreducible and aperiodic k x k matrix,
k = 3. Then there exist states /, u, jo, j,, s, t with 152w, jo#ji, jo# L i #1,
such that
x>0 (20"

to 7

I, x I, x1I
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Proof. There exist {, j,, ji» Jjo#Jji, such that I, xII; >0,
otherwise I7 is deterministic and therefore periodic. We may suppose,
without loss of generality, j,=0, j,=1. Now consider different possible
values of r:

(a) t=0 or 1: If for any /, /#0, [#1 we have II,,=1I,,=0, IT
should be reducible. Let then / be such that either I7,,#0 or I1,, #0, [ #0,
/# 1. Then, by taking s being either j, or j, and u=1t (20') is satisfied.

(b) t>2: We may take, without loss of generality, 1 =2. Suppose, ad
absurdo, the lemma false; then, necessarily, IT,,=171,,=0 for all u+#2,
since on the contrary (20) is satisfied with s=0 or 1.

For any /# 2, let s, be such that /7, ,> 0; then the states s,,..., 5, _, are
necessarily distinct, otherwise (20°) is satisfied; so

{S3rms Sk 1} = {2 k— 1}/{r)

for some r, as illustrated in the following:

0 1 Sy 5y Sy
0 0 |--veerees Looreeennnes
0 0 1 ...................
1 1

0 0 .......................
0 0 W e 1---

This also implies that s, =5, =i for some i >2 and r =i, otherwise the
lemma is true. Now r could not be equal to 2, otherwise either the lemma
is true or we must have /7;=0 for i>3, j<2, which implies that I7 is
reducible. We consider the case r > 3.

It is now clear that I7,, =0 for any k#s, and any /#2, and [T, , =0
for any k > 2. Therefore we have

Mgy x I3 x Ty x -+ x 1T, >0

— Lisk—t

This implies that I7 is periodic, a contradiction, and achieves the proof of
the lemma.

Let us now consider the case k= 2.

We look for solutions of (15) such that all the parameters, which are
in this case zq,(t), but two, are vanishing. The nonvanishing parameters are
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denoted zq (1), zg1(0), T#0, |a|=]|t|, and they satisfy zy,(t)+ zo,(5)=0.
A similar discussion as above leads to an interval [0, a], « >0, for zq,(7)
and another one [, 0], <0, for z4(0), if the following conditions are
satisfied:

1x(0,7,0) (1, 7, 1)>0 (22)
H(1,7,0) 45(0, 0, 1) >0 (23)

We may suppose, without loss of generality, that T, I7,,I1,,>0, a
condition which is satisfied if /7 is aperiodic and irreducible. By repeating
similar arguments as above, it turns out that this condition on I7; allows
us to find ¢ and 1, ¢ #1, |0| = |1|, satisfying (22) and (23). This achieves
the proof of the theorem.

2. TIME REVERSIBILITY
A stationary probability measure v on (Q,, &,, ¢) is time reversible if

V((l)o T Xy Wy = xn) = V(wo =Xy W =Xy e Wy = XO) (24)
for any n and any (xg,..., Xx,,). If v=y,, this property is equivalent to
pAl;= Pl

We denote by R, , the subset of all time-reversible probability
measures of C, ,. For simplicity, we omit the index A in what follows. We
shall construct measures in R, distinct from p,. For this purpose, we use
the above construction. Denote by R, , the set of measures in C,, which
are time reversible in the sense of (24). We have the following lemma.

Lemma 2. Let ueR,,; then ¢,u, given by (10), is in R,,.

Proof. One obtains, by straightforward computation, for /=0, 1,...,
n—1, peN*, and xe KZ the following equations:

(i) ForpueC,,
vol{w: W= Xg,, W, =X,,})
= (X5 _ 1ypseens Xpn
X U0 = X (o 2yyreees Wy =X(p— -1 | @y =X, 13u)
X oo xplwe=Xgye Wy =X,_, | @, =x,)
(i) For pe4A,,

Vol {@: 0o = X ys @ = X0} ) = vo({@: W= Xg,.., @, =X, })
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(iii)
0'vo({@: @o= X pyeces Wy =X }) = 6"~ Vo {(@: Wo = Xqsrrr Wpy =X, })

The lemma follows from these equations and from the definition
Of (0"#-

Theorem 2. If I7 is reversible, irreducible, and aperiodic, then for
all n> N, N sufficiently great, R, , , contains measures distinct from u,.

Proof. In order to construct ue R, for [T irreducible and aperiodic
which is distinct from u, we proceed as in Section 1, by solving (11)-(13)
for any . On account of the reversibility (24) this system is equivalent to
(11), (13), and (24). The linear system (14) is simplified to the first £ equa-
tions. So, for any fixed 7, we have to solve AZ =0 for Z =(z, ;) with matrix
A being the k first lines of (14). The rank of this system is &. We take as
principal variables those indexed by (i, 0) for all i. They are expressed in
terms of the other variables, the parameters J, as follows:

Zio=— 2, Zj Vi=0,.,k—1

Let us denote r(1,,..., ,) = (T, T;)- We look for a solution such that for
some t and o #71, t#r(1), and a#r(0), z, (1), z; (7). 2 (), and
z,.,(0) are nonvanishing, with jo #0, j, #0, jo# j,, and

Y z;(1)=0

T

In order to ensure the reversibility of u, we have to construct solutions
such that
Zi (T Tn) = Zji(Tpypees Ty)

On account of the reversibility of /7, we see that I7 5> 0iff 17, > 0.
'T}.len Zio. ol H(D))y 2 4(r(1)) 2, 5(r(0)), and z;,(r(c)) are also non-
vanishing. We take all the others parameters vanishing.
Here the positivity conditions are
Zip jo(T) 2 —paliaTp)
2i5. (1) 2 —paliot)))

Zio.jo(r) + zio,j‘(r) S #rz(ioro)
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The same inequalities hold for . As above, it is sufficient for this to
have

BlioTo) >0, Uallpaj;) >0
They are satisfied if there exist s, t € K, s # ¢, such that

I, um,mn,>0

ios * % tjo 4 1

This is satisfied for any aperiodic matrix 7.
The proof goes through as above. |

Remark. In the case of a strictly positive matrix 7, the set of ue R, ,,
which coincide with p, on the first » coordinates contains a nonempty
convex open set.

In fact, to construct reversible invariant measures on K"*' distinct
from p,, we proceed in solving the linear system

Z #(xo,---, xn) = .u'n(xo,'"’ Xy l) (25)

Z #(17 in"" x,,_l,_].)=ll,[(0)0=l., wn=j) (26)
XYooy Xp— |

H(X0s0ery Xp) = J(X 151005 Xo) (27)

Using (27), we are left with the system (25) and (26) and a reduced
number of unknowns p(x,,.., x,). Let us denote by I(r) the subset of K"+
such that x=r(x). When x =r(x), we choose one of u(x) and u(r(x)) as
unknown, eliminating the other in view of (27). Thus we have a new system
given by (25) and (26) and a reduced set of unknowns, which we denote
AX=7Y" Denote by X° the solution p,(x,,.., X,). A general solution
X=X%+2Z ZeKer(A), has to satisfy the positivity of g, ie., Z> —X° To
compute the number of unknowns, we distinguish two cases:

(a) If n=2p+ 1: The number of unknowns is $k”*+'(k”*' +1).
(b) If n=2p: The number of unknowns is $k”*'(k” + 1).

Now, in the system (25) and (26) some equations are.redundant. In
fact, if (Xgyees Xy — 1) = (X, _ 1+ Xg), then Eq. (25) implies, in view of the
reversibility of u,,

Z iu(xn— 190es XO’ ,V) = #n(xn— 1o xo)

Similarly, in (26) we may take only i < j. Thus the number of equations
is reduced:
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(a) If n=2p+1: The number of unknowns is k+D _flr+D 4
Tk(k +1).

(b) If n=2p: The number of unknowns is k* —k? + 1k(k +1).
Therefore:

(a) Tn=2p+1:
M 1 +1 1 1 k
dlmKerAzzk” (kP 4+ 1)—kPt (k”—l)—z(k+l)
(b) If n=2p:
. 1 \ k
d1mKerA>—2-k”+ (k”+1)—k”(k”—l)—§(k+1)

This is greater than I for any n>2 and k> 2.
This shows that the kernel of A is a nontrivial vector space. Thus,
Ker(4)n {Z: Z> —X°} is a convex neighborhood of 0 in Ker(4).
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