# Non-Markovian Reversible Chapman-Kolmogorov Measures on Subshifts of Finite Type 

M. Courbage ${ }^{1}$ and D. Hamdan ${ }^{1}$

Received October 20, 1993


#### Abstract

We consider shift-invariant probability measures on subshift dynamical systems with a transition matrix $A$ which satisfies the Chapman-Kolmogorov equation for some stochastic matrix $\Pi$ compatible with $A$. We call them ChapmanKolmogorov measures. A nonequilibrium entropy is associated to this class of dynamical systems. We show that if $A$ is irreducible and aperiodic, then there are Chapman-Kolmogorov measures distinct from the Markov chain associated with $\Pi$ and its invariant row probability vector $q$. If, moreover, $(q, \Pi)$ is a reversible chain, then we construct reversible Chapman-Kolmogorov measures on the subshift which are distinct from ( $q, \Pi$ ).


> KEY WORDS: Topological Markov chain; Chapman-Kolmogorov equation; stationary non-Markovian stochastic processes; detailed balance.

## INTRODUCTION

The statistical foundations of nonequilibrium thermodynamics is based on the hypothesis that the macroscopic observables are represented by random processes which obey the Chapman-Kolmogorov equation (see, e.g., ref. 6, Chapter VII). The dynamical justification of this hypothesis is based on a coarse-graining procedure which goes back to Gibbs and has been largely discussed by Ehrenfest and Ehrenfest, ${ }^{(7)}$ Uhlenbeck, ${ }^{(9)}$ and Kac. ${ }^{(8)}$ To formulate this procedure in an abstract way, we consider a conservative dynamical system given by a one-to-one measurable transformation $S$ acting on a probability space ( $\Omega, \mathscr{A}$ ) and preserving the probability measure $\mu$. It can be shown ${ }^{(3)}$ that such a coarse-graining procedure is equivalent to the construction of a partition of $\Omega$ which we call the Chapman-Kolmogorov

[^0]partition. A finite partition $\mathscr{P}=\left\{P_{0}, \ldots, P_{k-1}\right\}$ of $\Omega$, where $P_{i} \in \mathscr{A}$ and $\mu\left(P_{i}\right)>0$ for all $i$, is a Chapman-Kolmogorov partition if the family of matrices $\Pi_{n}$ given by
\[

$$
\begin{equation*}
\left(\Pi_{n}\right)_{i j}=\mu\left(S^{-n} P_{j} \mid P_{i}\right) \tag{1}
\end{equation*}
$$

\]

forms a semigroup: $\Pi_{n+n^{\prime}}=\Pi_{n} \Pi_{n^{\prime}}, n, n^{\prime} \geqslant 0$; that is, $\Pi_{n}=\Pi^{\prime \prime}$, where $\Pi$ denotes $\Pi_{1}$.

If one, moreover, requires the entropy functional of the nonequilibrium distributions to approach its equilibrium value, then $\Pi$ should be 0 irreducible and aperiodic [3]. It is generally supposed that the stationary process associated to the dynamical system and the partition $\mathscr{P}$ is a Markov process; this leads to the Chapman-Kolmogorov property (see, e.g., ref. 6). Examples of non-Markovian stationary processes satisfying the Chapman-Kolmogorov equation have been obtained by P. Lévy. In ref. 4 we constructed a family of processes with infinite memory satisfying this equation for positive $\Pi$. In some cases, the Markov chain is the only process satisfying the Chapman-Kolmogorov equation (for example, if $\Pi$ is the identity matrix). In general, the processes satisfying the ChapmanKolmogorov property are more likely to be non-Markovian, as has been shown in ref. 5. Here we construct many distinct stationary processes satisfying the Chapman-Kolmogorov equation for irreducible and aperiodic $\Pi$.

The construction of such partitions is also related to a problem in the spectral theory of dynamical systems (see, e.g., ref. 2) on the realization of a given spectral type with functions having simple spatial properties. Alexeyev ${ }^{(1)}$ has shown that the maximal spectral type may be realized by a bounded function. It can be noticed that the existence of a ChapmanKolmogorov partition with irreducible and aperiodic matrix $\Pi$ implies that the system has a Lebesgue spectral type realized by a function taking a finite number of values.

The existence of a Chapman-Kolmogorov partition is constraining for the dynamical system. In fact, if we consider the case of a partition with two cells, with $\Pi$ irreducible and aperiodic, $\Pi$ has two real eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=\lambda$ such that $|\lambda|<1$. The function $\chi$ given by

$$
\chi=\alpha_{0} 1_{P_{0}}+\alpha_{1} 1_{P_{1}}
$$

where $\left(\alpha_{0}, \alpha_{1}\right)$ is an eigenvector of $\Pi$ corresponding to $\lambda_{2}$, has a spectral measure $\mu_{\chi}$ eiquivalent to the Lebesgue measure. In fact, one verifies that $\chi$ is orthogonal to 1 in $L_{\mu}^{2}$, and if we take $\|\chi\|=1$, then we obtain by simple computations

$$
\begin{aligned}
1_{P_{0}} & =\mu_{0}\left(1+\alpha_{0} \chi\right) \\
\left\langle\chi, U^{\prime \prime} \chi\right\rangle & =\lambda^{n}\|\chi\|^{2}=\lambda^{|n|}
\end{aligned}
$$

where $(U f)(X)=f\left(S^{-1} X\right)$ and $\mu_{i}=\mu\left(P_{i}\right)$. Then we get

$$
\begin{align*}
\left\langle 1_{P_{0}}, U^{n} 1_{P_{0}}\right\rangle & =\left\langle\mu_{0}\left(1+\alpha_{0} \chi\right), \mu_{0}\left(1+\alpha_{0} U^{n} \chi\right)\right\rangle \\
& =\mu_{0}^{2}\left(1+\alpha_{0}^{2} \lambda^{n}\right) \tag{2}
\end{align*}
$$

Now, $\alpha_{0}$ and $\alpha_{1}$ are computed from the orthonormality of $(1, \chi)$, $x_{0}^{2}=\mu_{1} / \mu_{0}, \alpha_{1}^{2}=\mu_{0} / \mu_{1}$. This gives the following condition:

$$
\begin{equation*}
\mu\left(P_{0} \cap S^{-n} P_{0}\right)-\mu\left(P_{0}\right)^{2}=\mu\left(P_{0}\right) \mu\left(P_{1}\right) \lambda^{n} \tag{3}
\end{equation*}
$$

Conversely, if $P_{0}$ is a subset of $\Omega$, such that $0<\mu\left(P_{0}\right)<1$, and satisfying (3) for some $\lambda$, then the partition $P=\left\{P_{0}, P_{1}=P_{0}^{c}\right\}$ is a ChapmanKolmogorov partition. This is also equivalent to

$$
\begin{equation*}
\mu\left(P_{i} \cap S^{-n} P_{j}\right)-\mu\left(P_{i}\right) \mu\left(P_{j}\right)=\alpha_{i} \alpha_{j} \mu_{i} \mu_{j} \lambda^{n} \tag{4}
\end{equation*}
$$

$i=0$ or 1 , for any $n$.
This raises the question of whether this condition may be realized for any dynamical system with Lebesgue spectral component, in particular, for those systems with zero entropy.

In ref. 5 we gave examples of ergodic systems with zero entropy having partitions $\mathscr{P}$ which are independent at different times.

In Section 1 we construct non-Markov measures for topological Markov chains (subshifts) having irreducible and aperiodic transition matrix. These measures, which may be ergodic, can be used as invariant measures for hyperbolic attractors.

In Section 2 we consider the problem of construction of reversible stationary stochastic processes from reversible Chapman-Kolmogorov partitions. This corresponds to the so-called "microscopic reversibility" used in the statistical theory of nonequilibrium thermodynamics in order to justify the Onsager relations. ${ }^{(6)}$ This can be formulated as follows: The conservative dynamical system $(\Omega, \mathscr{A}, S, \mu)$ is called reversible if there exists a one-to-one $\mu$-preserving transformation $I$ such that $I^{2}=1$ and ISI $=S$. Moreover, we suppose that there exists a partition $\mathscr{P}$ such that $I P_{i}=P_{i}$ for all $i$. This implies that
$\mu\left(P_{x_{0}} \cap T^{-1} P_{x_{1}} \cap \cdots \cap T^{-n} P_{x_{n}}\right)=\mu\left(P_{x_{n}} \cap T^{-1} P_{x_{n-1}} \cap \cdots \cap T^{-n} P_{x_{0}}\right)$
where $x_{i}=0, \ldots, k-1$. Let $\Phi$ be the mapping: $\Omega \rightarrow K^{\mathbb{Z}}, \phi(\omega)=\left(x_{i}\right)$ defined by: $T^{n} \omega \in P_{x_{n}}$. This mapping transports $\mu$ into $\Phi \mu$, which is shift invariant on $K^{\mathbb{Z}}$, such that

$$
\begin{equation*}
\phi \mu\left(\omega_{0}=x_{0}, \ldots, \omega_{n}=x_{n}\right)=\phi \mu\left(\omega_{0}=x_{n}, \ldots, \omega_{n}=x_{0}\right) \tag{6}
\end{equation*}
$$

If, moreover, $\mathscr{P}$ is a Chapman-Kolmogorov partition, then the reversibility property (5) implies that

$$
\begin{equation*}
\mu\left(P_{i}\right)\left(\Pi^{n}\right)_{i j}=\mu\left(P_{j}\right)\left(I^{n}\right)_{j i} \tag{7}
\end{equation*}
$$

This is called the detailed balance equation (also "microscopic reversibility"). We show that the Chapman-Kolmogorov equation and the detailed balance equation may be satisfied for stationary stochastic processes which are not Markovian and for dynamical systems even nonergodic. Here also we see that the Markovian character is not necessary.

## 1. NON-MARKOVIAN INVARIANT MEASURE ON SUBSHIFT SYSTEMS

Let $K=\{0,1, \ldots, k-1\}, k \geqslant 2$, and let $A$ be a $k \times k$ matrix whose elements $A_{i j}$ are zero or one. Let $\Omega_{A}$ be the set of all doubly infinite sequences $\left(\omega_{i}\right), \omega_{i} \in K$, such that $A_{\omega_{i}, \omega_{i+1}}=1$. Let $\sigma$ be the shift transformation: $(\sigma \omega)_{i}=\omega_{i+1}$. Such a system is called a subshift or a topological Markov chain.

Let $\Pi$ be a stochastic $k \times k$ matrix compatible with $A$, that is, $\Pi_{i j}>0$ if and only if $A_{i j}>0$. A $p$-uplet $\tau=\left(i_{1}, \ldots, i_{p}\right)$ such that $A_{i_{1}, i_{2}}=\cdots=$ $A_{i_{p-1, i}}=1$ will be called an admissible word of length $|\tau|=p$. Let $q=\left(p_{i}\right)$ be a row probability vector invariant under $\Pi$. The Markov measure $\mu_{\pi}$ is defined by

$$
\begin{equation*}
\mu_{\pi}\left(\omega_{n}=x_{0}, \ldots, \omega_{n+p}=x_{p}\right)=p_{x_{0}} \Pi_{x_{0}, x_{1}} \cdots \Pi_{x_{p}-1, x_{p}} \tag{8}
\end{equation*}
$$

which we simply denote $\mu_{\pi}\left(x_{0}, \ldots, x_{p}\right)$. Thus $\mu_{\pi}$ is defined on the $\sigma$-algebra $\mathscr{A}_{A}$ generated by the admissible cylindrical sets

$$
\left\{\omega: \omega_{n}=i_{1}, \omega_{n+1}=i_{2}, \ldots, \omega_{n+p}=i_{p}\right\}
$$

where $\tau=\left(i_{1}, \ldots, i_{p}\right)$ is an admissible word.
Definition. A $\sigma$-invariant probability measure on $\left(\Omega_{A}, \mathscr{A}_{A}\right)$ that satisfies the Chapman-Kolmogorov equation

$$
\begin{equation*}
v\left(\omega_{m}=j \mid \omega_{0}=i\right)=\left(\Pi^{m}\right)_{i j} \tag{9}
\end{equation*}
$$

for $m>0$, will be called a Chapman-Kolmogorov measure for the matrix $\Pi$. We denote by $C_{\pi, A}$ the set of these measures.

Let $C_{\pi, n, A}$ be the set of all probability measures $\mu$ on $K^{n+1}$ charging the admissible cylindrical sets, invariant under the left-shift and satisfying (9) for $m=1, \ldots, n$. For any such $\mu$, we define a measure $v_{0}$ on $\left(\Omega_{A}, \mathscr{A}_{A}\right)$ by

$$
\begin{align*}
& v_{0}\left(\left\{\omega: \omega_{0}=x_{0}, \omega_{1}=x_{1}, \ldots, \omega_{r n}=x_{r n}\right\}\right) \\
& \quad=\mu\left(x_{0}, \ldots, x_{n}\right) \mu\left(x_{n+1}, \ldots, x_{2 n} \mid x_{n}\right) \cdots \mu\left(x_{(r-1) n+1}, \ldots, x_{r n} \mid x_{(r-1) n}\right) \tag{10}
\end{align*}
$$

where we denote

$$
\begin{aligned}
\mu\left(\left\{\omega: \omega_{0}=x_{0}, \ldots, \omega_{k}=x_{k}\right\}\right) & =\mu\left(x_{0}, \ldots, x_{k}\right), \quad k \leqslant n \\
\mu\left(\left\{\omega: \omega_{1}=y_{1}, \ldots, \omega_{n}=y_{n} \mid \omega_{0}=y_{0}\right\}\right) & =\mu\left(y_{1}, \ldots, y_{n} \mid y_{0}\right)
\end{aligned}
$$

If $\mu$ is distinct from $\left.\mu_{\pi}\right|_{\kappa^{n+1}}$, then $\varphi_{n}(\mu)=(1 / n) \sum_{i=0}^{n-1} \sigma^{i} v_{0}$ is in $C_{\pi . A}$ and it is distinct from $\mu_{\pi} .{ }^{(5)}$

Theorem 1. If $\Pi$ is irreducible and aperiodic, then there is $N$ such that, for $n \geqslant N, C_{\pi, n, A}$ contains measures distinct from $\mu_{\pi}$.

Proof. In order to construct such $\mu$, we shall solve the system

$$
\begin{align*}
& \sum_{j} \mu(i \tau j)=\mu_{\pi}(i \tau)  \tag{11}\\
& \sum_{i} \mu(i \tau j)=\mu_{\pi}(\tau j)  \tag{12}\\
& \sum_{\tau} \mu(i \tau j)=\mu_{\pi}\left(\omega_{0}=i, \omega_{n+1}=j\right) \tag{13}
\end{align*}
$$

where $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ is an admissible word.
For any fixed $\tau$, Eqs. (11) and (12) form a linear system of equations denoted $A X=Y^{0}$, where $X$ represents the variables $\mu(i \tau j)$. As $\mu_{\pi}(i \tau j)$ is a solution of the system (which we denote $X^{0}$ ), the general solution of the system is $X^{0}+Z$, where $Z$ is the general solution to

$$
\begin{equation*}
A Z=0 \tag{14}
\end{equation*}
$$

By ordering the variables $X=\{\mu(i \tau j)\}$ and $Z=\left\{z_{i j}(\tau)\right\}$ lexicographically $\{(0,0),(0,1), \ldots,(0, k-1),(1,0), \ldots\}$, the matrix $A$ takes the form

The rank of this matrix is $(2 k-1)$. We take as principal variables for the system $A Z=0$ those indexed by $\{i, 0\}, i=0, \ldots, k-2$, and ( $k-1, j$ ), $j=0, \ldots, k-1$. They are expressed in terms of the other variables, which we call the parameters $J$. Taking, moreover, into account the positivity of $\mu(i \tau j), Z \geqslant-X^{0}$, we obtain

$$
\begin{align*}
& z_{i, j}(\tau) \geqslant-\mu_{\pi}(i \tau j), \quad(i, j) \in J \\
& z_{i, 0}(\tau)=-\sum_{j=1}^{k-1} z_{i, j}(\tau) \geqslant-\mu_{\pi}(i \tau 0), \quad i=0, \ldots, k-2  \tag{15}\\
& z_{k-1,0}(\tau)=\sum_{i=0}^{k-2} \sum_{j=1}^{k-1} z_{i j}(\tau) \geqslant-\mu_{\pi}(k-1, \tau, 0) \\
& z_{k-1, j}(\tau)=-\sum_{i=0}^{k-2} z_{i, j} \geqslant-\mu_{\pi}(k-1, \tau, j), \quad j=1, \ldots, k-1
\end{align*}
$$

All these inequalities determine intervals of variation of the parameters. Moreover, the Chapman-Kolmogorov equation (13) becomes

$$
\begin{equation*}
\sum_{\tau} z_{i, j}(\tau)=0 \tag{16}
\end{equation*}
$$

We shall look for solutions such that all the parameters but four are vanishing. The nonvanishing parameters are denoted $z_{i_{0} j_{0}}(\tau), z_{i_{0 j 0} j_{0}}(\sigma)$, $z_{i_{0 j} j_{1}}(\tau), z_{i_{0 j i}}(\sigma), i_{0} \neq k-1, j_{0} \neq j_{1}, j_{0} \neq 0, j_{1} \neq 0, \tau \neq \sigma,|\tau|=|\sigma|$, We find from (15) that $z_{k-1,0}(\tau), z_{k-1,0}(\sigma), z_{k-1, j_{0}}(\tau)$, and $z_{k-1, j_{0}}(\sigma)$ are also nonnull. Such a solution implies that the number of states of the chain is at least 3 , i.e., $k \geqslant 3$. The case $k=2$ will be discussed separately. The system (15) is then reduced to

$$
\begin{align*}
z_{i_{0}, j_{0}}(\tau) & \geqslant-\mu_{\pi}\left(i_{0} \tau j_{0}\right) \\
z_{i_{0}, j_{1}}(\tau) & \geqslant-\mu_{\pi}\left(i_{0} \tau j_{1}\right) \\
-\mu_{\pi}(k-1, \tau, 0) \leqslant z_{i_{0}, j_{0}}(\tau)+z_{i_{0}, j_{1}}(\tau) & \leqslant \mu_{\pi}\left(i_{0} \tau, 0\right)  \tag{15'}\\
z_{i_{0}, j_{0}}(\tau) & \leqslant \mu_{\pi}\left(k-1, \tau, j_{0}\right) \\
z_{i_{0}, j_{1}}(\tau) & \leqslant \mu_{\pi}\left(k-1, \tau, j_{1}\right)
\end{align*}
$$

and similarly for $\sigma$.
The Chapman-Kolmogorov equations reduce to

$$
\begin{align*}
& z_{i_{0, j 0}^{0}}(\tau)=-z_{i_{0, j 0}}(\sigma) \\
& z_{i_{0, j 1},}(\tau)=-z_{i_{0}, j_{1}}(\sigma) \tag{17}
\end{align*}
$$

A study of the system ( $15^{\prime}$ ) for $\tau$ and $\sigma$ shows that the inequalities

$$
\begin{array}{r}
\mu_{\pi}\left(i_{0} \tau j_{0}\right) \mu_{\pi}\left(i_{0} \tau j_{1}\right) \mu_{\pi}\left(k-1, \tau, j_{0}\right) \mu_{\pi}\left(k-1, \tau, j_{1}\right)>0 \\
\mu_{\pi}\left(i_{0} \sigma j_{0}\right) \mu_{\pi}\left(i_{0} \sigma j_{1}\right) \mu_{\pi}\left(k-1, \sigma, j_{0}\right) \mu_{\pi}\left(k-1, \sigma, j_{1}\right)>0 \tag{19}
\end{array}
$$

are sufficient conditions for the existence of a nonunique solution. Condition (18) leaves us the freedom to choose ( $z_{i_{0}, j_{0}}(\tau), z_{i_{0}, j_{1}}(\tau)$ ) in the subset

$$
I_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0,-\mu_{\pi}\left(i_{0} \tau j_{0}\right) \leqslant x<0,0<y \leqslant \mu_{\pi}\left(k-1, \tau, j_{0}\right)\right\}
$$

Similarly, (19) is a sufficient condition which leaves us the freedom to choose $\left(z_{i_{0}, j_{0}}(\sigma), z_{i_{0}, j_{1}}(\sigma)\right)$ in the subset

$$
I_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0,0<x \leqslant \mu_{\pi}\left(k-1, \sigma, j_{0}\right),-\mu_{\pi}\left(i_{0}, \sigma, j_{1}\right) \leqslant y<0\right\}
$$

As $\Pi$ is irreducible and aperiodic, to satisfy (18) and (19), it is sufficient to find $s, t \in K$, such that

$$
\begin{equation*}
\Pi_{k-1, s} \Pi_{i 0, s} \Pi_{t j_{0}} \Pi_{t j,}>0 \tag{20}
\end{equation*}
$$

In fact, in this case, there exists an admissible word $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ sufficiently long connecting $s$ and $t$ so that

$$
\begin{array}{rr}
\mu_{\pi}\left(i_{0}, s, \delta, t, j_{0}\right)>0, & \mu_{\pi}\left(i_{0}, s, \delta, t, j_{1}\right)>0 \\
\mu_{\pi}\left(k-1, s, \delta, t, j_{0}\right)>0, & \mu_{\pi}\left(k-1, s, \delta, t, j_{1}\right)>0
\end{array}
$$

Now, we find $\sigma \neq \tau \equiv(s, \delta, t)$ and satisfying (19): let $n_{0}>0$ such that $\Pi^{n_{0}}>0$; then for $n \geqslant 3 n_{0}$, let $\lambda_{n_{0}+1} \in K$ such that $\lambda_{n_{0}+1} \neq \delta_{n_{0}+1}$; then there exist an admissible word ( $\lambda_{1}, \ldots, \lambda_{n_{0}}$ ) connecting $s$ and $\lambda_{n_{0}+1}$ and an admissible word $\left(\lambda_{n_{0}+2}, \ldots, \lambda_{n}\right)$ connecting $\lambda_{n_{0}+1}$ and $t$. Thus, $\sigma=\left(s, \lambda_{1}, \ldots, \lambda_{n}, t\right) \neq \tau$.

Let us now show that there exist $s, t \in K$ such that (20) is satisfied under the conditions

$$
\begin{equation*}
i_{0} \neq k-1, \quad j_{0} \neq 0, \quad j_{1} \neq 0, \quad j_{0} \neq j_{1} \tag{2}
\end{equation*}
$$

After some permutation $S$ of $(0, \ldots, k-1)$, denoting $S(k-1)=u$, $S\left(i_{0}\right)=v, S(0)=l$, the conditions (20) and (21) read: there exist $u, v, j_{0}, j_{1}$, $l$ such that $u \neq v, u \neq l, j_{0} \neq j_{1}, j_{0} \neq l, j_{1} \neq l, \Pi_{u s} \times \Pi_{v s} \times \Pi_{i j 0} \times \Pi_{i j_{1}}>0$.

They can be satisfied if, in particular, we may choose $v=l$. Thus we need to prove the following result:

Lemma 1. Let $\Pi$ be an irreducible and aperiodic $k \times k$ matrix, $k \geqslant 3$. Then there exist states $l, u, j_{0}, j_{1}, s, t$ with $l \neq u, j_{0} \neq j_{1}, j_{0} \neq l, j_{1} \neq l$, such that

$$
\Pi_{u s} \times \Pi_{t s} \times \Pi_{t j_{0}} \times \Pi_{t j 1}>0
$$

Proof. There exist $t, j_{0}, j_{1}, j_{0} \neq j_{1}$, such that $\Pi_{i j 0} \times \Pi_{i j \mathrm{j}}>0$, otherwise $\Pi$ is deterministic and therefore periodic. We may suppose, without loss of generality, $j_{0}=0, j_{1}=1$. Now consider different possible values of $t$ :
(a) $t=0$ or 1: If for any $l, l \neq 0, l \neq 1$ we have $\Pi_{10}=\Pi_{11}=0, \Pi$ should be reducible. Let then $l$ be such that either $\Pi_{10} \neq 0$ or $\Pi_{t 1} \neq 0, l \neq 0$, $l \neq 1$. Then, by taking $s$ being either $j_{0}$ or $j_{1}$ and $u=t\left(20^{\prime}\right)$ is satisfied.
(b) $t \geqslant 2$ : We may take, without loss of generality, $t=2$. Suppose, $a d$ absurdo, the lemma false; then, necessarily, $\Pi_{u 0}=\Pi_{u 1}=0$ for all $u \neq 2$, since on the contrary ( $20^{\prime}$ ) is satisfied with $s=0$ or 1 .

For any $l \neq 2$, let $s_{l}$ be such that $\Pi_{l, s_{l}}>0$; then the states $s_{3}, \ldots, s_{k-1}$ are necessarily distinct, otherwise ( $20^{\prime}$ ) is satisfied; so

$$
\left\{s_{3}, \ldots, s_{k-1}\right\}=\{2, \ldots, k-1\} /\{r\}
$$

for some $r$, as illustrated in the following:

| 0 | 1 | $s_{2}$ | $s_{1}$ | $s_{k-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $\begin{gathered} \ldots \ldots \ldots \\ 1 \cdots \cdots \end{gathered}$ |  |  |
| 0 | 0 |  |  |  |
| 1 | 1 |  |  |  |
| 0 | 0 |  |  |  |
| - | - | $\ldots$ |  | . |
|  | - | .................. 1 .. |  |  |
| 0 | 0 |  |  |  |

This also implies that $s_{0}=s_{1}=i$ for some $i \geqslant 2$ and $r=i$, otherwise the lemma is true. Now $r$ could not be equal to 2 , otherwise either the lemma is true or we must have $\Pi_{i j}=0$ for $i \geqslant 3, j \leqslant 2$, which implies that $\Pi$ is reducible. We consider the case $r \geqslant 3$.

It is now clear that $\Pi_{l, k}=0$ for any $k \neq s_{l}$ and any $l \neq 2$, and $\Pi_{2, k}=0$ for any $k \geqslant 2$. Therefore we have

$$
\Pi_{03} \times \Pi_{13} \times \Pi_{3 s_{3}} \times \cdots \times \Pi_{k-1, s_{k-1}}>0
$$

This implies that $\Pi$ is periodic, a contradiction, and achieves the proof of the lemma.

Let us now consider the case $k=2$.
We look for solutions of (15) such that all the parameters, which are in this case $z_{01}(\tau)$, but two, are vanishing. The nonvanishing parameters are
denoted $z_{01}(\tau), z_{01}(\sigma), \tau \neq \sigma,|\sigma|=|\tau|$, and they satisfy $z_{01}(\tau)+z_{01}(\sigma)=0$. A similar discussion as above leads to an interval $[0, \alpha], \alpha>0$, for $z_{01}(\tau)$ and another one $[\beta, 0], \beta<0$, for $z_{01}(\sigma)$, if the following conditions are satisfied:

$$
\begin{align*}
& \mu_{\pi}(0, \tau, 0) \mu_{\pi}(1, \tau, 1)>0  \tag{22}\\
& \mu_{\pi}(1, \tau, 0) \mu_{\pi}(0, \sigma, 1)>0 \tag{23}
\end{align*}
$$

We may suppose, without loss of generality, that $\Pi_{00} \Pi_{01} \Pi_{10}>0$, a condition which is satisfied if $\Pi$ is aperiodic and irreducible. By repeating similar arguments as above, it turns out that this condition on $\Pi_{i j}$ allows us to find $\sigma$ and $\tau, \sigma \neq \tau,|\sigma|=|\tau|$, satisfying (22) and (23). This achieves the proof of the theorem.

## 2. TIME REVERSIBILITY

A stationary probability measure $v$ on $\left(\Omega_{A}, \mathscr{A}_{A}, \sigma\right)$ is time reversible if

$$
\begin{equation*}
v\left(\omega_{0}=x_{0}, \ldots, \omega_{n}=x_{n}\right)=v\left(\omega_{0}=x_{n}, \omega_{1}=x_{n-1}, \ldots, \omega_{n}=x_{0}\right) \tag{24}
\end{equation*}
$$

for any $n$ and any $\left(x_{0}, \ldots, x_{n}\right)$. If $v=\mu_{\pi}$, this property is equivalent to

$$
p_{i} \Pi_{i j}=p_{j} \Pi_{j i}
$$

We denote by $R_{\pi, A}$ the subset of all time-reversible probability measures of $C_{\pi, A}$. For simplicity, we omit the index $A$ in what follows. We shall construct measures in $R_{\pi}$ distinct from $\mu_{\pi}$. For this purpose, we use the above construction. Denote by $R_{\pi, n}$ the set of measures in $C_{\pi, n}$ which are time reversible in the sense of (24). We have the following lemma.

Lemma 2. Let $\mu \in R_{\pi, n}$; then $\varphi_{n} \mu$, given by (10), is in $R_{n}$.
Proof. One obtains, by straightforward computation, for $l=0,1, \ldots$, $n-1, p \in \mathbb{N}^{*}$, and $x \in K^{\mathbb{Z}}$ the following equations:
(i) For $\mu \in C_{\pi, n}$

$$
\begin{aligned}
v_{0}(\{\omega: & \left.\left.\omega_{0}=x_{0}, \ldots, \omega_{p n}=x_{p n}\right\}\right) \\
= & \mu\left(x_{(p-1) n}, \ldots, x_{p n}\right) \\
& \times \mu\left(\omega_{0}=x_{(p-2) n}, \ldots, \omega_{n-1}=x_{(p-1) n-1} \mid \omega_{n}=x_{(p-1) n}\right) \\
& \times \cdots \times \mu\left(\omega_{0}=x_{0}, \ldots, \omega_{n-1}=x_{n-1} \mid \omega_{n}=x_{n}\right)
\end{aligned}
$$

(ii) For $\mu \in \mathscr{R}_{\pi, n}$

$$
v_{0}\left(\left\{\omega: \omega_{0}=x_{p n}, \ldots, \omega_{p n}=x_{0}\right\}\right)=v_{0}\left(\left\{\omega: \omega_{0}=x_{0}, \ldots, \omega_{p n}=x_{p n}\right\}\right)
$$

(iii)

$$
\sigma^{\prime} v_{0}\left(\left\{\omega: \omega_{0}=x_{p n}, \ldots, \omega_{p n}=x_{0}\right\}\right)=\sigma^{n-1} v_{0}\left\{\left(\omega: \omega_{0}=x_{0}, \ldots, \omega_{p n}=x_{p n}\right\}\right)
$$

The lemma follows from these equations and from the definition of $\varphi_{n} \mu$.

Theorem 2. If $\Pi$ is reversible, irreducible, and aperiodic, then for all $n>N, N$ sufficiently great, $R_{\pi, n, A}$ contains measures distinct from $\mu_{\pi}$.

Proof. In order to construct $\mu \in R_{\pi}$ for $\Pi$ irreducible and aperiodic which is distinct from $\mu_{\pi}$ we proceed as in Section 1, by solving (11)-(13) for any $\tau$. On account of the reversibility (24) this system is equivalent to (11), (13), and (24). The linear system (14) is simplified to the first $k$ equations. So, for any fixed $\tau$, we have to solve $A Z=0$ for $Z=\left(z_{i, j}\right)$ with matrix $A$ being the $k$ first lines of (14). The rank of this system is $k$. We take as principal variables those indexed by $(i, 0)$ for all $i$. They are expressed in terms of the other variables, the parameters $J$, as follows:

$$
z_{i 0}=-\sum_{j=1}^{k-1} z_{i j}, \quad \forall i=0, \ldots, k-1
$$

Let us denote $r\left(\tau_{1}, \ldots, \tau_{n}\right)=\left(\tau_{n}, \ldots, \tau_{1}\right)$. We look for a solution such that for some $\tau$ and $\sigma \neq \tau, \tau \neq r(\tau)$, and $\sigma \neq r(\sigma), z_{i_{0}, j_{0}}(\tau), \quad z_{i_{0}, j_{1}}(\tau), z_{i_{0}, j_{0}}(\sigma)$, and $z_{i_{0} . j_{1}}(\sigma)$ are nonvanishing, with $j_{0} \neq 0, j_{1} \neq 0, j_{0} \neq j_{1}$, and

$$
\sum_{\tau} z_{i j}(\tau)=0
$$

In order to ensure the reversibility of $\mu$, we have to construct solutions such that

$$
z_{i j}\left(\tau_{1}, \ldots, \tau_{n}\right)=z_{j i}\left(\tau_{n}, \ldots, \tau_{1}\right)
$$

On account of the reversibility of $\Pi$, we see that $\Pi_{i j}>0$ iff $\Pi_{j i}>0$.
Then $z_{j_{0, i}, i_{0}}(r(\tau)), z_{j_{1}, i_{0}}(r(\tau)), z_{j_{0}, i_{0}}(r(\sigma))$, and $z_{j_{1} i_{0}}(r(\sigma))$ are also nonvanishing. We take all the others parameters vanishing.

Here the positivity conditions are

$$
\begin{aligned}
z_{i_{0}, j_{0}}(\tau) & \geqslant-\mu_{\pi}\left(i_{0} \tau j_{0}\right) \\
z_{i_{0}, j_{1}}(\tau) & \geqslant-\mu_{\pi}\left(i_{0} \tau j_{1}\right) \\
z_{i_{0}, j_{0}}(\tau)+z_{i_{0}, j_{1}}(\tau) & \leqslant \mu_{\pi}\left(i_{0} \tau 0\right)
\end{aligned}
$$

The same inequalities hold for $\sigma$. As above, it is sufficient for this to have

$$
\mu_{\pi}\left(i_{0} \tau j_{0}\right)>0, \quad \mu_{\pi}\left(i_{0} \sigma j_{1}\right)>0
$$

They are satisfied if there exist $s, t \in K, s \neq t$, such that

$$
\Pi_{i 0 .} \Pi_{y_{j 0}} \Pi_{y_{1},}>0
$$

This is satisfied for any aperiodic matrix $\Pi$.
The proof goes through as above.
Remark. In the case of a strictly positive matrix $\Pi$, the set of $\mu \in R_{n, n}$ which coincide with $\mu_{\pi}$ on the first $n$ coordinates contains a nonempty convex open set.

In fact, to construct reversible invariant measures on $K^{n+1}$ distinct from $\mu_{\pi}$, we proceed in solving the linear system

$$
\begin{align*}
\sum_{x_{n}} \mu\left(x_{0}, \ldots, x_{n}\right) & =\mu_{\pi}\left(x_{0}, \ldots, x_{n-1}\right)  \tag{25}\\
\sum_{x_{1}, \ldots, x_{n-1}} \mu\left(i, x_{0}, \ldots, x_{n-1}, j\right) & =\mu_{\pi}\left(\omega_{0}=i, \omega_{n}=j\right)  \tag{26}\\
\mu\left(x_{0}, \ldots, x_{n}\right) & =\mu\left(x_{n}, \ldots, x_{0}\right) \tag{27}
\end{align*}
$$

Using (27), we are left with the system (25) and (26) and a reduced number of unknowns $\mu\left(x_{0}, \ldots, x_{n}\right)$. Let us denote by $I(r)$ the subset of $K^{n+1}$ such that $x=r(x)$. When $x=r(x)$, we choose one of $\mu(x)$ and $\mu(r(x))$ as unknown, eliminating the other in view of (27). Thus we have a new system given by (25) and (26) and a reduced set of unknowns, which we denote $A X=Y^{0}$. Denote by $X^{0}$ the solution $\mu_{\pi}\left(x_{0}, \ldots, x_{n}\right)$. A general solution $X=X^{0}+Z, Z \in \operatorname{Ker}(A)$, has to satisfy the positivity of $\mu$, i.e., $Z \geqslant-X^{0}$. To compute the number of unknowns, we distinguish two cases:
(a) If $n=2 p+1$ : The number of unknowns is $\frac{1}{2} k^{p+1}\left(k^{p+1}+1\right)$.
(b) If $n=2 p$ : The number of unknowns is $\frac{1}{2} k^{p+1}\left(k^{p}+1\right)$.

Now, in the system (25) and (26) some equations are.redundant. In fact, if $\left(x_{0}, \ldots, x_{n-1}\right)=\left(x_{n-1}, \ldots, x_{0}\right)$, then Eq. (25) implies, in view of the reversibility of $\mu_{\pi}$,

$$
\sum_{y} \mu\left(x_{n-1}, \ldots, x_{0}, y\right)=\mu_{\pi}\left(x_{n-1}, \ldots, x_{0}\right)
$$

Similarly, in (26) we may take only $i \leqslant j$. Thus the number of equations is reduced:
(a) If $n=2 p+1$ : The number of unknowns is $k^{(2 p+1)}-k^{(p+1)}+$ $\frac{1}{2} k(k+1)$.
(b) If $n=2 p$ : The number of unknowns is $k^{2 p}-k^{p}+\frac{1}{2} k(k+1)$.

Therefore:
(a) If $n=2 p+1$ :

$$
\operatorname{dim} \operatorname{Ker} A \geqslant \frac{1}{2} k^{p+1}\left(k^{p+1}+1\right)-k^{p+1}\left(k^{p}-1\right)-\frac{k}{2}(k+1)
$$

(b) If $n=2 p$ :

$$
\operatorname{dim} \operatorname{Ker} A \geqslant \frac{1}{2} k^{p+1}\left(k^{p}+1\right)-k^{p}\left(k^{p}-1\right)-\frac{k}{2}(k+1)
$$

This is greater than 1 for any $n \geqslant 2$ and $k \geqslant 2$.
This shows that the kernel of $A$ is a nontrivial vector space. Thus, $\operatorname{Ker}(A) \cap\left\{Z: Z \geqslant-X^{0}\right\}$ is a convex neighborhood of 0 in $\operatorname{Ker}(A)$.

## REFERENCES

1. V. M. Alexeyev, Existence of a bounded function of the maximal spectral type, Ergod. Theory Dynam. Syst. 2:59-261 (1982).
2. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory (Springer, 1982).
3. M. Courbage and G. Nicolis, Markov evolution and $H$-theorem under coarse graining in conservative dynamical systems, Europhys. Lett. 11:1-6 (1990).
4. M. Courbage and D. Hamdan, A class of nonmixing dynamical systems with monotonic semigroup property, Lett. Math. Phys. 22:101-106 (1991).
5. M. Courbage and D. Hamdan, Chapman-Kolmogorov equation for non-Markovian shift invariant measures, Ann. Prob., to appear.
6. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969).
7. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics (Cornell University Press, Ithaca, New York, 1959).
8. M. Kac, Probability and Related Topics in Physical Sciences (Interscience, New York, 1959).
9. G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics (American Mathematical Society, Providence, Rhode Island, 1963).

[^0]:    Laboratoire de Probabilités, Université P. et M. Curie, 75252 Paris Cedex 05, France. courbage(a ccr.jussieu.fr.

